Egy kis érdekes elvi boncolgatás más dimenziók létéről:
Kérdés tőletek: Létezhet-e háromnál több térbeli dimenzió a Világmindenségben?
Amikor a Világmindenséget vizsgáljuk, általában a szokásos 3+1 dimenziós mivoltában értelmezzük. Azaz a magasság, szélesség, hosszúság térbeli dimenzióit értjük alatta, miközben másodpercenként egy egységnyit haladunk előre az idő dimenziójában is - ez számunkra a teljesen természetes Univerzum. Hogy mit jelent ez a gyakorlatban? A téridő bármely tetszőleges pontjáról bármely irányba szabadon mozoghatunk az általunk választott irányba. Nem számít, merre tájoljuk be önmagunkat, haladhatunk előre vagy hátra, felfelé és lefelé, jobbra és balra: három független dimenzión keresztül kormányozhatjuk magunkat. Akad egy negyedik plusz dimenzió is, az idő, amin át ugyanolyan kérlelhetetlenül mendegélünk, mint ahogyan a térben tesszük, és Einstein relativitás-elméletének a szabályai révén a térben és az időben történő mozgásunk elválaszthatatlan egymástól. Egymásba fonódnak. Azonban vajon lehetségesek-e további mozgások? Létezhetnek-e további extra térbeli dimenziók azokon túl, melyeket a hétköznapokban ismerünk? Ezt a kérdést tette fel tegnap az egyik olvasóm is: „... a kérdésem, hogy a 4. [térbeli] dimenzió ténylegesen létezik-e, vagy csupán az egész egy elméleti boncolgatás? Ha mégis létezik, hogyan lehet bizonyítani a létezését? Ha pedig elméleti, miért gondoljuk azt, hogy a gyakorlatban is létezhet?" Ezeket a kérdéseket már többször megkaptam az évek során. A fizikusokat is több, mint egy évszázada foglalkoztatja ez az izgalmas talány, és sok matematikus és filozófus is rengeteget töprengett már rajta. Ebben a cikkemben ezt a témát mutatom be a nagyközönség számára.
Fontos rögtön leszögezni az elején, hogy a dimenziók nem olyan fizikai létezők, mint ahogy azt a többség hiszi, hanem matematikai vonatkoztatások. Ez azt jelenti, hogy valójában a Világmindenség nem három, nem négy, avagy akármennyi dimenziós, nem rendelkezik dimenziókkal. Kissé elvonatkoztatva: létezik a valóság és léteznek a számok. A valóságnak semmi köze a számokhoz. Mint ahogy nem léteznek vektorok sem a valóságban, mégis használjuk őket a fizikában. Skalár, vektor, tér, dimenzió… ezek nem létező fizikai valóságok, hanem csupán elvont definíciók. Ahogyan egy 4,78 kg-os tárgynak sincs köze magához a 4,78-as számhoz. A dimenziók, mint olyanok, a matematikai modellnek a részei – ha úgy tetszik, egyfajta ”matematikai mankók” [1]. Egy bizonyos rendszer adott természetű szabadsági fokait írják le, ám az már részben önkényes elhatározás, hogy hány dimenziót is különítünk el egy elméletben.
A szabad szemmel jól látható, makroszkópikus Univerzumunk makroszkópikus mozgásainak leírásához három metrikus térdimenzióval szoktuk modellezni a tömegpontok mozgását. A relativitás-elméletben másféle metrika (a metrika azt fejezi ki, hogyan definiáljuk két pont távolságát) szerint, négy dimenzióval lehetséges kalkulálni. Ellenben a relativitás-elméletet és a kvantumelméletet szinkronizálni akaró húrelmélet (pontosabban az abból levezetett M-elmélet) [2] kimondja, hogy noha négyet érzékelünk az összes dimenzió közül, ám valójában tizenegyben élünk, melyek megadnák a gravitáció és a kvantummechanika egyesítéséhez szükséges extra matematikai teret. Azonban ezek a modellek jellegzetes sajátosságai, nem pedig a Világmindenségé. Az elméletbeli szuperhúrok tehát valamiképpen rezegnek, ezt mi megpróbáljuk valahogy matematikai formákba önteni, azaz egyenletekbe felírni. Ekkor derül ki valami lényeges dolog. A szuperhúrok azért, hogy kialakítsák a mi általunk érzékelt Univerzum objektumait, olyan bonyolult mozgást végeznek, hogy annak leírásához feltételeznünk kell a 11 dimenzióban történő mozgást - ennyi dimenzió szükségeltetik a matematikai leírásához. Viszont mint írtam, az az egyik része a dolognak, hogy valami mozog, a másik része pedig, hogy mi azt kapcsolatba akarjuk hozni a számokkal.
Kérdés tőletek: Létezhet-e háromnál több térbeli dimenzió a Világmindenségben?
Amikor a Világmindenséget vizsgáljuk, általában a szokásos 3+1 dimenziós mivoltában értelmezzük. Azaz a magasság, szélesség, hosszúság térbeli dimenzióit értjük alatta, miközben másodpercenként egy egységnyit haladunk előre az idő dimenziójában is - ez számunkra a teljesen természetes Univerzum. Hogy mit jelent ez a gyakorlatban? A téridő bármely tetszőleges pontjáról bármely irányba szabadon mozoghatunk az általunk választott irányba. Nem számít, merre tájoljuk be önmagunkat, haladhatunk előre vagy hátra, felfelé és lefelé, jobbra és balra: három független dimenzión keresztül kormányozhatjuk magunkat. Akad egy negyedik plusz dimenzió is, az idő, amin át ugyanolyan kérlelhetetlenül mendegélünk, mint ahogyan a térben tesszük, és Einstein relativitás-elméletének a szabályai révén a térben és az időben történő mozgásunk elválaszthatatlan egymástól. Egymásba fonódnak. Azonban vajon lehetségesek-e további mozgások? Létezhetnek-e további extra térbeli dimenziók azokon túl, melyeket a hétköznapokban ismerünk? Ezt a kérdést tette fel tegnap az egyik olvasóm is: „... a kérdésem, hogy a 4. [térbeli] dimenzió ténylegesen létezik-e, vagy csupán az egész egy elméleti boncolgatás? Ha mégis létezik, hogyan lehet bizonyítani a létezését? Ha pedig elméleti, miért gondoljuk azt, hogy a gyakorlatban is létezhet?" Ezeket a kérdéseket már többször megkaptam az évek során. A fizikusokat is több, mint egy évszázada foglalkoztatja ez az izgalmas talány, és sok matematikus és filozófus is rengeteget töprengett már rajta. Ebben a cikkemben ezt a témát mutatom be a nagyközönség számára.
Fontos rögtön leszögezni az elején, hogy a dimenziók nem olyan fizikai létezők, mint ahogy azt a többség hiszi, hanem matematikai vonatkoztatások. Ez azt jelenti, hogy valójában a Világmindenség nem három, nem négy, avagy akármennyi dimenziós, nem rendelkezik dimenziókkal. Kissé elvonatkoztatva: létezik a valóság és léteznek a számok. A valóságnak semmi köze a számokhoz. Mint ahogy nem léteznek vektorok sem a valóságban, mégis használjuk őket a fizikában. Skalár, vektor, tér, dimenzió… ezek nem létező fizikai valóságok, hanem csupán elvont definíciók. Ahogyan egy 4,78 kg-os tárgynak sincs köze magához a 4,78-as számhoz. A dimenziók, mint olyanok, a matematikai modellnek a részei – ha úgy tetszik, egyfajta ”matematikai mankók” [1]. Egy bizonyos rendszer adott természetű szabadsági fokait írják le, ám az már részben önkényes elhatározás, hogy hány dimenziót is különítünk el egy elméletben.
A szabad szemmel jól látható, makroszkópikus Univerzumunk makroszkópikus mozgásainak leírásához három metrikus térdimenzióval szoktuk modellezni a tömegpontok mozgását. A relativitás-elméletben másféle metrika (a metrika azt fejezi ki, hogyan definiáljuk két pont távolságát) szerint, négy dimenzióval lehetséges kalkulálni. Ellenben a relativitás-elméletet és a kvantumelméletet szinkronizálni akaró húrelmélet (pontosabban az abból levezetett M-elmélet) [2] kimondja, hogy noha négyet érzékelünk az összes dimenzió közül, ám valójában tizenegyben élünk, melyek megadnák a gravitáció és a kvantummechanika egyesítéséhez szükséges extra matematikai teret. Azonban ezek a modellek jellegzetes sajátosságai, nem pedig a Világmindenségé. Az elméletbeli szuperhúrok tehát valamiképpen rezegnek, ezt mi megpróbáljuk valahogy matematikai formákba önteni, azaz egyenletekbe felírni. Ekkor derül ki valami lényeges dolog. A szuperhúrok azért, hogy kialakítsák a mi általunk érzékelt Univerzum objektumait, olyan bonyolult mozgást végeznek, hogy annak leírásához feltételeznünk kell a 11 dimenzióban történő mozgást - ennyi dimenzió szükségeltetik a matematikai leírásához. Viszont mint írtam, az az egyik része a dolognak, hogy valami mozog, a másik része pedig, hogy mi azt kapcsolatba akarjuk hozni a számokkal.