Próbálgattam itt megfejteni a nagy igazságot, miképp lehetne feltámasztani a Mach 2.0 képességet interkontinentális távon, de be kell valljam, nagyon Kuznyecov-centrikusan közelítettem meg a kérdést. Azonban akár a Tu-144Sz, akár napjaink Tu-22M3-as repüléseit nézzük, látszik, hogy ez a vonal nem jó se szuperszonikus, se szubszonikus repülésre se.
Így hát elkezdtem kicsit kutatni a Rolls Royce Olympus 593 család tájékán. Ez volt a Concorde-ba került Olympus-variáns.
Igazán figyelmre méltó alkotás. Azt ugye tudjuk, hogy az NK-144-esnek kb 200 óra volt az élettartama, a Koleszov RD-36-51A-nak 50(!), az NK-32-esnek pedig még napjainkban is csupán 750 óra engedélyezett, aztán nagyjavítás.
Na igen - mondhatnánk - ez az utánégetős hajtóművek világa.
Csakhogy az Olympos 593-as ezzel szemben:
- Forszázs nélkül, maximál rezsimen erősebb volt, mint az NK-144-es, de még az NK-32-esnél is erősebb, vagy közel azonos tolóerejű
- Utánégetés csupán 20% tolóerő-többletet adott, lényegében csak minimál forszázs volt, de ez koránt sem volt baj
- A hajtómű úgynevezett termikus hatásfoka az 1970-es évek elejére elérte a 43%-ot, ezzel akkor a világ legmagasabb hatásfokú belsőégésű gépévé vált
- A hajtómű érdekessége, hogy a kis-, illetve a nagynyomású kompresszor fokozatszáma azonos, 7+7. Ilyet ma már nem csinál senki.
- A hajtómű nyomásviszonya a kornak (és a működési feltételeknek) megfelelő, napjainkra már igencsak szerénynek mondható 11-es, de a hajtómű lényeges része (akár az SR-71-esnél) a szívócsatorna, amiben Mach 2.01-nél 7.3-as dinamikus kompresszió jött létre a beletorlódott levegő miatt, így a teljes rendszer sűrítési viszonya 82(!) volt. Érzékeltetés képpen: egy mai ultramodern, nagy kétáramúsági fokú utasszállító hajtómű nyomásviszonya 40-45 körül van és ez magasnak tekinthető.
- A hajtómű konvencionális fúvócsöve után a két szegmenses "szemöldök" becenevű reverz alkotta az ejektort. Mach 2-nél a szívócsatornából egy bypass körön nagy nyomású, de a kilpő gázoknál hidegebb levegőt kevertek a fúvócső kritikus keresztmetszete mögé, a szétnyitott, Laval-profilt kiadó reverzek elé. Ez a hidegebb levegő aztán a magas hőtől expandál és nyomást gyakorol a reverz-szegmensek belső falára, ami amúgy is azér van, hogy megvezesse az úgynevezett helyi hangsebesség (jele: a) feletti forró gázok még mindig meglévő, igencsak magas nyomás miatti expanzióját. A szuperszonikus gázok fúvócső utáni expanzióját a szakirodalom sugárrobbanásnak hívja és jól megfigyelhető a világűrbe kijutó rakéták széttáguló gázain. A nagy probléma, hogy az oldalirányú, széttartó tolóerővektor a tengelyirányú tolóerő-eredőt csökkenti. Azonban a Concorde-nál az ejektor fúvócsőre nyomást gyakorolva a teljes szuperszonikus tolóerő mintegy 20%-át nyerik így. Tehát a hajtóműből az atmoszférába kilépő égésgázok reakcióerején túl, az expandáló levegő-gáz keverék felületre gyakorolt nyomása is hajtotta a repülőgépet. És mindezt utánégetés nélkül!
- A kilencvenes évek végén nagy szó volt, hogy a közforgalmi repülésben nagy slágernek számító B737-300-asokon és A-320-as családon először megjelent GE-Snecma CFM56-osa elérte a 29 ezer órát. Ebben az időben az igazi élettartam rekordernek a katonai, utánégetős hajtóművek világában a GE F110GE100-asa volt, a maga 3000 órájával. Az orosz nagyméretű, utánégetős hajtóművek élettartam adatait már írtam, a kisebb, vadászgépekbe került hajtóművek adata pedig szintén ismert
- A Concorde hajtóművénél a kompresszor és turbina lapátok csere-intervalluma 10 ezer óra volt. Ez se kevés, de a java még csak most jön. A hajtómű főbb komponensei 25 ezer órát bírtak, de érdekes mód, a legforróbb szekció, a fúvócső 30 ezer órát bírt. És ezeknél is többet tudott a kombinált reverz-ejektor szekció, a maga 40 ezer órájával! Mozgó alkatrész, még akkor is, ha csupán három állása volt.
Látható, hogy mai aero- és gázdinamikai modellezéssel és korszerű anyagokkal az Olympus 593-as hajtóművet, szívócsatornát és ejektor-reverzt alapul véve egy igen komoly hajtóművet lehetne építeni.