Már miért ne legyen közel Budapest? A világ atomerőműveinek tetemes része városok közelében lett felépítve. Szerencsére a tervezők nem ülnek fordítva a lóra és nem a nagy semmi kellős közepébe tervezik az erőműveket, a balesetektől rettegve, ahol nincs hálózat, fogyasztó, hűtő kapacitás, stb... A cél nem az, hogy kevés ember legyen a környéken, ha komoly sugárszennyezés történik, hanem hogy ne történjen komoly sugárszennyezéssel járó baleset. A mai reaktoroknál a zónaolvadás esélye már pár millió és pár 10 millió reaktorévente 1 alkalom közt mozog. Ennél gyakorlatilag bármilyen ipari technológia sokkal veszélyesebb. De simán csak a városi élet is sok nagyságrenddel több kockázatot hordoz a közlekedés, a légszennyezés, a nagyobb népsűrűségben gyorsabb járványterjedés, stb... miatt.
Egy új atomerőműnek a legjobb helye épp Budapest alatt, Százhalombattán lenne:
- Ott van a Dunamenti Erőmű, ami fénykorában közel 1,9 GW villamos teljesítménnyel rendelkezett és eleve hőszolgáltatási célra is hasznosították, majdnem 1 GW hőszolgáltatási teljesítménnyel. Tehát a villamosenergia infrastruktúra közel 2 GW-ra, a távhő közel 1 GW-ra van kiépítve. A fénykorában 36% hatásfokú erőmű hűtése úgy van kiépítve, hogy amikor nem volt épp szükség a hőhasznosításra, akkor is könnyedén le tudott kezelni 3,4 GW hőelvezetési igényt. Ugyanakkor jelenleg csak 0,8 GW alatti összteljesítményű gázos blokkok üzemelnek és azok hatásfoka jóval nagyobb (57%), mint a korábbi állapotban, így a maximális hűtési igény csak 0,6 GW. Tehát van ott 1,2 GW villamosenergia infrastruktúra tartalék, 2,6 GW hűtési tartalék és tetemes távfűtési infrastruktúra tartalék is. A beruházási igény fajlagosan itt a legalacsonyabb.
- Ha igazán komolyan szeretnénk hasznosítani az atomenergiát és egyben csökkenteni a gázfogyasztásunkat, akkor a reaktorok hulladékhőjét illene hasznosítani. Ezzel ugyanis a 80%-ban földgázt fogyasztó távfűtést és a szintén nagyrészt földgázt fogyasztó technológia hőigényt lehet kiváltani. Márpedig hulladékő bőven van, mivel Paks I áramtermelési hatásfoka 33%, Paks II-é 37,5% lesz és a jelenlegi 3+ generációs reaktorok mindegyikének 34-38% között mozog a hatásfoka. 95 fokos távhő fűtővízzel számolva elvileg a ezeknek a reaktoroknak a hulladékhője 50-60%-os arányban hasznosítható lenne. Na és hol van a legnagyobb távfűtési hőigény? Budapesten. Az országos távfűtés hőfogyasztás 38%-a ide koncentrálódik. 5,5 - 6-szor több, mint a 2. - 3. helyezett városainkban. Nyáron meg hűteni is lehet hővel (abszorpciós hűtés) (nem túl jó hatásfokkal, de ez ingyen hőnél keveset számít). A távhűtés terén is vannak a főtávnak tervei.
- A fenti Budapesti hőigény nem tartalmazza az agglomerációs településekét, és a Budapest távhő fejlesztésben lévő tartalékot. A gáz ára várhatóan - még ha csökken is - hosszú távon sem tér már vissza a 2010-2020-as évtizedes átlagra (a jelenlegi árszintnél majdnem 25-ször alacsonyabb, vagy pláne a 2020 tavaszi-nyári minimumra (a jelenlegi árszintnél majdnem 70-szer alacsonyabb), mint ahogy a '73-as olajálság előtti 2-3 dolláros szint sem tért vissza soha többé, hanem a '80-as évek 2. felétől 15-20 dolláros sávba tért vissza az olajár. Emiatt a korábban ökölszabály szerint 30 km-es távhő vezeték gazdaságossági határ többszörösére emelkedett. Így már az is megérheti még hosszú távon is, hogy Székesfehérvárig, vagy Dunaújvárosig vigyék a hőt Battáról. Ősszel/tavasszal mehet a hő az üvegházakba, fóliasátrakba is.
- Budapest, mint a legnagyobb fogyasztó közelsége a villamosenergia szállítási, elosztási veszteséget is jelentősen csökkentené.
- A hajnali fogyasztási mélyvölgy idején lehet az esetleg fölösleges áramot víz szivattyúzásra használni. Na nem szivattyús energia tárolóra, hanem mondjuk arra, hogy megemelve a vizet a kiindulási ponton, gravitációs elven, csatornákkal öntözési célból a vízhiányos területekre szállítsuk. Ehhez minél magasabban a vízkivételi pont annál jobb. Tehát Budapest alatt észszerűbb csatornát indítani, mint mondjuk Dunaújvárosból, vagy Paksról. És akkor teljesül gergo55 kedvenc mániája a vízmegtartás is, ráadásul árvíznél legalább a Budapest alatti szakaszt ideiglenes vízkivéttel lehet tehermentesíteni.
- Ezen kívül a Dunamenti Erőmű és a finomító eleve úgy lett építve, hogy összedolgozzanak. A DUFI gőzigényének egy részét eddig is DE szolgálta ki. 1-2 reaktor a DUFI hőigénybe (gőzigénye) is vastagon bedolgozhat. Ráadásul a DUFI közelsége több előnnyel is jár. Egyrészt a reaktorok vészüzemi tartalékába be tudnak dolgozni a DE gázos blokkja és a DUFI is. Így gyakorlatilag kizárt e fukusimai típusú helyzet kialakulása, amikor az erőmű a bőven tervezési határ feletti földrengést gyönyörűen kiállta, de a földrengés miatti a vezetékszakadásokkal a külső hálózattól elszigetelődött, a saját termelése a vészleállással megszűnt, a vészüzemi dízeles tartalékot pedig elmosta a szökőár. Százhalombattán a szükséges vészüzemi tartalék sokszorosa állna rendelkezésre gázos, olajos, dízeles külső betápként és az ehhez való üzemanyag készlet is sok nagyságrenddel meghaladja az erőművi vészüzemhez szükséges szintet. Másrészt mindazon védmű, amivel eddig is védték a Duna áradása ellen a DE-t és a DUFI-t már most is megvan és ha ezt extrém magas árvíz szintig emelik, akkor azzal a reaktorok mellett a gázturbinás termelést és a DUFI-t is védik. Ugyanígy egymást védik ezek az egységek más külső behatással szemben is, illetve egy csokorban közösen lehet azokat védeni. (Például: légvédelem légi terrorizmus és háborús légicsapás ellen, ami egyben Budapestet is védi délről. A közös környezet ellenőrzése, védelme illetéktelen behatolás, szabotázs ellen.). Harmadrészt a tűzoltó, katasztrófa elhárító egységek összedolgozhatnak. Gyorsan és nagyobb kapacitással reagálhatnak. DUFI besegíthet a reaktoroknak és fordítva, attól függően, hogy alakul ki vészhelyzet.
Azt el lehet felejteni, hogy a Tiszára atomerővet építsünk. Vagy legfeljebb csak nagyon kis teljesítményűt, az is hűtőtoronnyal, azaz drágábban. A Tisza átlagos és minimális vízhozama is nagyjából 10-szer kisebb, mint a Dunáé. Ráadásul nyáron melegebb is. A hőfelvevő képessége 15-20-szor kisebb a Dunához képest adott hőfok eléréséig.
Szintén felejtős a tavi, vagy víztározós hűtés. A hűtéshez vagy folyóvíz kell, ami a hőt elszállítja, vagy hatalmas víztömeg, amiben a hő eloszlik az átlaghőmérséklet jelentős növelése nélkül (tenger), vagy óriási felületen kellene a hőt teríteni a természetes párolgásos hűtéshez és a vizet pótolni. A Balaton - ami Közép-Európa legnagyobb tava - 1,9 milliárd m3 vizet tartalmaz. Ezt a Duna Budapestnél 2350 m3/s vízhozamával bő 9 nap alatt szállítja. Ha hozzá tesszük, hogy a Balaton átlagos vízhőmérséklete nyári melegben jóval magasabb, mint a Dunáé, akkor látható, hogy még a Balaton sem alternatívája hűtés szempontjából a Dunának. Másként érzékeltetve a problémát, Paks II (Paks I nélküli) 4 GW hűtési igényével 23 nap alatt a teljes Balaton vízhőmérsékletét 1 fokkal megemelné. Nyáron gyakorlatilag megfőzné a tavat, jóval 30 fok feletti vízhőmérséklettel. Ráadásul a megemelkedett párolgási veszteséget sem lehetne pótolni, így hosszú távon ki is szárítaná azt.