Akkor egy picit a hegesztésről - első HSZ.
- a repülőgépeken rendszerint a 7xxx-es ötvözeteket használják, ezek kiválásosan keményített, túlöregített ötvözetek. Ha valami, hát akkor ez tényleg az alumínium teteje. Itt arra játszanak, hogy a maximális szilárdságot érjék el (mesterséges öregítéssel és GP 2-es zónákkal olyan 700MPa szilárdságot lehet elérni. A szerkezeti acél
500MPa, az autóban használt DP (dual phase) acélok érik el ezt a szilárdságot, 7,8kg/dm3 sűrűség mellett..)
A 7xxx-es alumíniumnál főként cinket (Zn), Mg (magnézium)Cu (réz), esetleg Mn (mangán), Cr (króm), Zr (cirkónium) kerül felhasználásra. Ennek az a lényege, hogy ezek az anyagok nem oldódnak az alumíniumban szoba-hőmérsékleten. Mivel nem tudok ide betenni állapotábrát, elmagyarázom inkább a trükköt. Zn esetében az a játék, hogy olyan 440 fok környékén 70% Zn-t oldani az alumínium, szoba-hőmérsékleten meg olyan 0,1%-ot. Miért is van ez? Az alumínium rendszáma 13, a cinké 30, vagyis a periódusos rendszerben az alumínium alatt balra eggyel van. Ez azt jelenti, hogy a viselkedése hasonló, a külső elektronhéjon nagyjából hasonló (ha nagyon nagy az eltérés, akkor abból ionos rendszer lenne, lásd Na + Cl, és kész a konyhasó). Az olvadási pontok különbözőek (alumínium 620, zcnk olyan 400 fok körül), emiatt szilárd oldat jön létre. Ez azt jelenti, hogy nem olvad össze az egész egy egységbe - mint mondjuk a réz és a nikkel, hanem nagyon is jól elkülöníthetőek ezek a területek. Ezeket a területeket nevezzük a későbbiekben zónáknak (Guiner-Preston, vagy GP1 és GP2)
A lépések a következőek mondjuk a 7075-ös ötvözetnél:
- beviszel cinkből mondjuk 6%-ot (a 70% nem kell, mivel zink sokkal nehezebb, mint az alumínium..). Ha figyeltél, akkor emlékszel rá, hogy szoba-hőmérsékleten csak 0,1%-ot old. mi lesz a többivel? Itt jön a képbe a kémia
- beleteszel az ötvözetbe olyan 2,5% magnéziumot. Mi lesz ezután?
A magnézium reakcióba lép a zinkel, keletkezik MgZn2, a stöchiometriából pedig látható, hogy a vegyületben kétszer annyi cink van, mint magnézium (vagyis így minden külső elektron elégedetten ücsörög a külső héjon). Miért is jó nekünk, hogy lett egy csomó MgZn2 vegyületünk, ami még csak nem is oldódik az alumíniumban?
A válasz egyszerű. Az anyag szilárdságát a diszlokációk határozzák meg. A diszlokációk hibahelyek az anyagban, ez lehet atomrács hiba, idegen atom (rácspontban - szubsztitúciós, vagy rácspont közötti - intersztíciós), rács-rétegződés, stb. A fémrács (szintén kémia: kollektív elektronfelhő, cserébe jó szilárdság, hővezetőképesség) rendkívül erős, az "erőssége" a termodinamikától függ, nagyon mennék mélyen bele, legyen elég annyi, hogy ennek köszönhetően van a ferrites acélnak folyáspontja, míg az ausztenites acélnak, alumíniumnak (rozsdamentes acél) pedig nincs, vagy emiatt anyag a terhelés hatására fel is tud keményedni, addig, amíg a diszlokációkkal
szemben működő belső gátló tényezők ezt megengedik. Amikor ezek a gátlótényezők már nem elegendőek a diszlokációkkal szemben, akkor jön a kontrakció (elvékonyodik az anyag), majd a törés. Ez röviden az anyag szilárdsága. Ha a szilárdságot növelni akarjuk, akkor lényegében a diszlokációk mozgását kell gátolni.
(apró kitérő:
Őseink rájöttek, hogy a kovácsolt anyagok erősebbek, mint a nem kovácsolt anyagok, vagyis feltalálták az alakítási anizotrópia által irányított szemcsetorzulást - pestiesen szólva a szálirányt. Ez az egyik módszer. A másik módszer, az ötvözés. Acélnál ezt a legegyszerűbb szénnel megoldani. Az olvadt acél (most nem a korszerű, ELC-acélokról van szó) a lehűléskor először ausztenites szerkezetű, ekkor 2,06% szenet tud oldani, majd az oldhatósága a hőmérséklettel rohamosan csökken. A sima acél kb. 737 fokig még ausztenites, ekkor az acél már régen szilárd. Ha hűlés nagyon nagyon lassú, akkor a diffúziós folyamatok le tudnak játszódni, a szénatom szépen elballagnak oda, ahol van nekik hely az acélban, csoportosulnak és megalakítják a grafitklasztereket. Ekkor a szén nem tud szilárdságnövelőként funkciónálni, sőt, inkább csökkenti a szilárdságot - ezt egyedül a lágyító hőkezelésnél írom elő, ha valami ősöreg öntvényt kell forgácsolni. Ha azt akarjuk, hogy a szén keménységet adjon,
akkor bizony kurva gyorsan kell lehűtni. John Rambo ilyenkor a vörösen izzó (szaknyelven szólva ausztenitesítési hőmérsékletet a teljes keresztmetszetben elért állapotban) darabot belevágja egy vödör vízbe (a szakszerűen megválasztott edzőközegbe), majd ebben az anyag gyorsan lehűl. A lehűlés során a rácsponti atomok helyzete megváltozik, átbillen ausztenitesből ferrites szerkezetűre - pl. itt már mágneses, előtte nem. A hangsúly a gyorson van. Ez olyan, mint amikor rárobbantod valakikre az épületet. Nincs idő kijönni, mindenki bent marad. Ekkor a szénatomok beleragadnak a kristályrácsba és eltorzítják. Emiatt a torzító hatás miatt a diszlokációk nem tudnak mozogni, a rács belső feszültségekkel terhelt (körbe áll a 6-os villamoson 5 ellenőr és nincs jegyed és te is belső feszültséggel vagy terhelt..). Ekkor az anyag nagyon kemény, de rideg. Rambo tudja ezt, hogy ilyenkor a karddal maximum rajoskodni tud, mást nem, egyszerre eltörik. Ekkor jön a megeresztés. Olyan 400-600 fok között beteszed a kemencébe a cuccost, majd bent hagyod 30-60 percre, majd lehűtöd. Ennyi idő alatt ezen a hőmérsékleten a rácspontok a termikus aktivitás miatt nagyobb szabad atomhosszon rezegnek, vagyis a szénatomok jobban el tudnak helyezkedni. Így a rácstorzító hatás csökken (így csökken a keménység és a szilárdság) viszont nő a szívósság (lehet Kill Billkedni és nem törik el kard..). Ezt csak olyan anyag esetében működik, ahol van fázisátalakulás. Az acélok egy része ilyen. Az ausztenites acélok, nikkel-ötvözetek, alumínium, réz, stb nem. Ezt a kitérőt azért szőttem bele, hogy a miért látható legyen. Ez a módszer működik, ha egymásban oldódnak az ötvözők. A vasnál ott a króm, ott a nikkel, stb. Ezek nagyjából behelyetessíthetőek a vasrácsba, mivel a méretük nagyjából azonos, külső elektronhéj dettó, olvadáspont hasonló. Emiatt nem lehet például alumíniumot meg acélt ömlesztőhegesztéssel összehegeszteni. Az acél olyan 1500 fokon szilárdul, az alumínium meg 620-on (ha ötvözet, akkor mindig alacsonyabb az olvadáspont), így rendkívül durva intermetallikus réteg jön létre -bár ezt is fel lehet használni..)
Na, igen, az alamónium.... Szóval, beleraktuk a hozzávalókat, ezután irány a kemence, bedurrantjuk most olyan 450 fokra. Ezen a hőmérsékleten az alumínium könnyen alakítható, ezért a MgZn2 kiválások tudnak mozogni. Itt az a célunk, hogy ezek a kiválások nagyon finoman, lehetőleg mindenhová eljussanak (diszperz eloszlás). Mivel ezek az intermetallikus fázisok nem részei a kristályrácsnak, ezek minden egyes diszlokáció mozgását gátolják. A hőmérséklet fontos ez legyen az eutektikus pont alatt (nagyon legegyszerűsítve: az eutektium azt jelenti, hogy a két alkotós rendszert felosztod úgy, hogy A-ból és B-ből is raksz bele. Kezded úgy, hogy A100% és B0%, majd mész tovább, végül A0% és B100%. Ahol ez a kétalkotós rendszernek a legalacsonyabb az olvadáspontja, ott az eutektikum. Ezen a hőmérsékleten az adott ötvözet mindkét alkotója egyszerre kezd el kristályosodni.),illetve legyen a korlátolt oldhatósági hőmérséklet felett (ezt viszont titokban tartom
). Itt hőntartjuk addig, amíg a diszperz állapot nincs meg. Hőntartás után jön a vízhűtés. Ekkor túltelített szilárd oldatot kapunk (emlékezzünk az acélnál a rácsban ragadt szénatomokra...). Ezek a beragadt kiválások ugyanúgy torzítják a rácsot, emiatt célszerű megereszteni. És itt ez lesz a trükk. A megeresztés során kapjuk meg a GP1 és GP2-es zónákat, amik a hőntartás kötelező rövidsége miatt nem tudtak létrejönni. Itt megint figyelni kell arra, hogy nehogy túlöregítsük az anyagot, vagyis jelen esetbe az MgZn2 diszperz precipitátum ne koaguáljon. (vagyis tudjon elbomlani...). Ekkor is természetesen gyorsan hűtünk. Meg van a 7075 - első fázis